

1
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced belong to their respective companies.

Using orbLock’s

OMG Resource Access Decision Facility (RAD)
for Application Access Management

www.2ab.com

Introduction

Today, one only has to open a newspaper or turn on the television to understand that there is growing
concern regarding the privacy of personal and business information. This concern is coming from both
individuals and businesses, and government regulations are increasingly addressing these concerns.
Although computer systems have traditionally been “secured,” it is evident that future systems will be
expected to enforce a higher quality and a finer granularity of security mechanisms.

One important aspect of securing future systems is the ability to control, with a fine level of granularity, the
ability of individuals and systems to access information and functionality that systems provide. 2AB, Inc.
has introduced the iLockTM product suite to address this problem.

In 1999 and 2000, the Object Management Group (OMG) developed a standard specification for software
to address the needs of protecting fine-grained resources. This specification is titled the “Resource Access
Decision Facility” and is publicly available at the OMG’s web site, www.omg.org. The orbLock software
that is offered by 2AB, Inc. provides a complete implementation of this specification. This paper will
describe the specification and the implementation and extensions provided by orbLockTM.

Security Functionality Overview

Securing distributed computing systems typically requires that security software can perform one or more
of the following functions:

! Authentication
! Message Protection
! Access Control
! Auditing

Authentication

Authentication is the term used to indicate that an individual or system has proven its identity.
Authentication may work in both directions in a distributed computing environment. That is, a client may
be required to prove its identity to some service, and conversely, some service might be required to prove
its identity to its client. The authentication function is the cornerstone for all other security functions.
Without reliable authentication, all other security features that may be used are effectively meaningless.

There are various techniques used to authenticate individuals and/or systems. They include:

! Shared secret - User ID and password
! Physical tokens such as ATM cards, Smart cards...
! Digital certificates
! Biometrics such as retina scan, thumbprint readers…

2
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced belong to their respective companies.

Message Protection

Message protection is the term used to indicate that messages (typically in transit across networks) are
protected from being viewed or modified by unauthorized persons. To protect messages from being
viewed, the sending party typically encrypts messages and the receiving party has the ability to decrypt the
message. To protect the message from being modified, there is typically encrypted information about the
message (perhaps a hash of the message) that can only be created by the sender and read by the receiver. If
this information does not match the message contents, there is a strong indication that the message has been
tampered with.

Message protection techniques should almost always be used when messages travel through public
networks (e.g. the Internet). Enterprises may or may not perceive the need for message protection within
internal private networks.

Access Control

Access control is the term used to describe mechanisms that ensure that authenticated individuals and/or
systems can only access protected resources for which they have permission. The term “protected
resource” is used to indicate anything that needs protecting. It could be a computer system, some specific
functionality of a system or some specific information that a system manages.

The iLockTM products specifically addresses the area of access control, and this paper is dedicated to this
aspect of security and OMG standards for implementation.

Auditing

Auditing is the term used to describe the recording of information needed to detect and investigate security
violations. The auditing mechanism must also provide the necessary tools to view and examine the
recorded information.

Access Control Overview

Access control is the term used to describe mechanisms that ensure that authenticated individuals and/or
systems can only access protected resources for which they have permission. The term “protected
resource” is used to indicate anything that needs protecting. It could be a computer system, some specific
functionality of a system, or some specific information that a system manages.

There are two aspects to access control. The first aspect is called “access decision.” This is the aspect of
access control that makes the decision to allow access or not. This decision is based on the security policy
that has been associated with the protected resource. The second aspect is called “access enforcement.”
This is the aspect of access control that enforces the result of the access decision.

A system may have requirements to control access to a wide variety of protected resources. Some of these
resources may be known to infrastructure software such as operating systems and/or communications
middleware. Other resources may only be known to business logic software. This may be information
such as a customer’s credit history.

3
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced belong to their respective companies.

Infrastructure Based Access Control

Infrastructure software is software used by business software developers that handle functions common to a
wide range of business functions. This would include operating systems, database management systems,
communications middleware, etc. The access control that can be placed on resources known to
infrastructure software is known as “Infrastructure Based Access Control.”

There are many examples of resources that are typically protected by infrastructure software. Operating
systems typically protect files using “read,” “write” and “execute” permissions. Database management
systems typically protect access to databases and database tables. Communication middleware typically
protects invocation of remote procedure calls, operations or methods.

The infrastructure software is responsible for both the access decision and the enforcement aspects of
access decision. Obviously, the infrastructure can use third party access control software to assist in the
decision/enforcement process; however, it is ultimately the infrastructure software’s responsibility. Often
there are hooks that can be used by third party software to protect specific resources. For example, there
are numerous products that specialize in protecting access to web pages.

Application Level Access Control

There are resources that need to be protected that only business logic can understand. For example, a
system might have customer records that include general information, billing information, transaction
history and credit history. Obviously, no infrastructure software will understand these resources; however,
it might be necessary to control who is allowed to do what with each of these resources. It is the
responsibility of the business logic to control the access to these resources. In fact, with the increasing
requirements for privacy of personal information, this is becoming a very important component of the
application access control requirements.

Application systems have traditionally implemented access control for business logic resources within the
code of the business application. At first, this appears to be a rather easy solution; however, the fact that
security policies are embedded in application code can significantly increase the long-term maintenance
costs for the system. A simple change to a security policy can result in all of the costs associated with
deploying a new release. Some systems may write code to make the security policy configurable; however,
this typically results in different administrative procedures for different systems. When security policy is
embedded in source code, it is impossible to determine the security policy without reviewing the source
code to locate the specific access control logic. This makes it difficult for an auditor to determine what the
policy is and whether the application software is performing authorization appropriately to meet business
and legislative security policies. It is important to maintain security policies outside of source code, in a
format that can be easily reviewed, to facilitate an audit process. Should problems be discovered during a
review/audit, the policies can be changed without disruption to the deployed business software.

Another issue related to embedding access decision logic within the business logic is auditing. Each
application must provide a means for creating audit records and a means for security administrators to
view/analyze those audit records. This forces business logic developers into the business of developing
infrastructure software. In addition, there is the real possibility that different applications systems will
implement different auditing strategies and tools, leading to additional training and overhead for security
administrators.

To address these problems, the Object Management Group (OMG) developed a comprehensive
specification for standard software to manage access control for fine-grained business resources. This
specification is called the “Resource Access Decision Facility.” The iLockTM product, from 2AB, provides
a complete implementation of this specification. The remainder of this paper summarizes this specification
and 2AB’s orbLockTM implementation.

4
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced belong to their respective companies.

OMG’s Resource Access Decision Facility (RAD)

Introduction

The Resource Access Decision Facility (normally referred to as RAD) is an OMG specified service
designed to assist applications that are required to control access to system resources. System resources are
defined to be anything that can be assigned a name. For example, a resource might be as fine-grained as a
field in a database row. On the other hand, a resource could be a collection of data centers that share some
common attributes.

In order to define appropriate policy, it is necessary to define the type of access that is being requested.
RAD calls this an "operation" on a resource. Common examples of operations on data element resources
are "create," "read," "update" and "delete," but operations may be anything that makes sense for the specific
resource. For example, a "door" resource might define operations such as "open," "close," "lock" and
"unlock." RAD supports requesting access decisions for a specific operation on a resource.

RAD makes an access decision based on the resource name, the operation and one or more security
attributes. Security attributes are identifying attributes of the entity requesting access to a resource.
Security attributes are one of two types. Identity attributes distinguish a subject from all other subjects. A
username is an example of an identity attribute. Privilege attributes are attributes that describe a property of
a subject. Groups, roles and clearances are examples of privilege attributes.

A programmer invokes the "access_allowed" operation in the AccessDecision interface to request an access
decision. The resource name to access, the operation and one or more security attributes are passed as
arguments to this operation. RAD uses these arguments to make the decision and returns "true" if access is
allowed and “false” if access is not allowed.

RAD Client AccessDecison
access_allowed

Resource name, operation, and
attributes

True if allowed, false if not
allowed

In the illustration above, the "RAD Client" (which is typically some service) invokes the "access_allowed"
operation passing the resource name, operation and security attributes as arguments. The operation returns
"true" if access is allowed, and “false” if not.

Although the functionality provided by the "access_allowed" operation is the basic functionality of the
RAD service, it provides far more flexibility and functionality. In the above scenario, it is assumed that a
policy engine made the access decision. RAD provides functionality for multiple policy engines to be
involved in making a decision, to allow different policy engines for different resources, and to combine the
results of different policy engines in unique ways.

5
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced belong to their respective companies.

RAD Interfaces

The RAD service consists of multiple interfaces. Some of the interfaces support functionality associated
with making an access decision, and some of the interfaces support functionality associated with
configuration. Those interfaces that support access decision functionality are called runtime interfaces.
Those interfaces that support configuration options are called administrative interfaces.

The following runtime interfaces support access decision functionality.

! AccessDecision - This interface is used to invoke "access_allowed" requests that ask for an access

decision. This is the interface that defines the signature of the operations that programmers may use to
request access decisions.

! PolicyEvaluator - This interface is the policy evaluation engine of RAD. It is used to evaluate a

request to access a resource. One or more PolicyEvaluators can be used to make an access decision.
The iLock product is delivered with a single default PolicyEvaluator that uses the iLock Security
Center service to make decisions. This default policy evaluator may be replaced and/or augmented
with custom evaluators.

! DecisionCombinator - This interface is used to examine the results returned from one or more

PolicyEvaluators and produces the final access decision. It may use simple "and" or "or" logic or it
may have more complex combinatory logic.

! PolicyEvaluatorLocator - This is the interface that is used to locate the proper PolicyEvaluators to be

used to make an access decision on a given resource name. Each resource that is to be protected can be
configured to have its own set of PolicyEvaluators that are used for this purpose. Resources that are
not configured for specific PolicyEvaluators use a set of "default" PolicyEvaluators.

! DynamicAttributeService - This interface can be implemented to examine and modify the list of

security attributes that will be used to make an access decision. This is designed to allow an enterprise
to develop application specific software that can modify security attributes.

The following interfaces are used to configure the operation of a RAD service:

! AccessDecisionAdmin - This interface is used to specify the PolicyEvaluatorLocator and the

DynamicAttributeService to be used.

! PolicyEvaluatorAdmin - This interface is used to associate policies with resource names. A

PolicyEvaluator may support one or more security policies. A resource name can then be associated
with one or more policies.

! PolicyEvaluatorLocatorBasicAdmin - This interface is used to set the default PolicyEvaluators and

DecisionCombinator to be used for resources that are not otherwise configured to use specific
PolicyEvaluators and/or DecisionCombinator.

! PolicyEvaluatorLocatorNameAdmin - This interface is used to associate a resource name with one

or more PolicyEvaluators and/or a DecisionCombinator.

! PolicyEvaluatorLocatorPatternAdmin - This interface is used to associate a pattern with one or

more PolicyEvaluators and/or a DecisionCombinator. A pattern has the same format as a resource
name; however, the fields within the name can be regular expressions. This is used to simplify
administration by allowing a group of resource names to be associated with PolicyEvaluators and/or a
DecisionCombinator.

6
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced belong to their respective companies.

Access Decision Model

In order to understand how the RAD service functions, it is helpful to examine the basic logic involved in
making an access decision. This framework is mandated by the OMG Resource Access Decision Facility to
support integration of ISV policy engines as well as user customization of the facility. The following
diagram illustrates the standard RAD Facility framework.

RAD Client

Access Decision

Dynamic Attribute
Service

Policy Evaluator
Locator

Decision Combinator

 1

2

3

4
5

Policy Evaluators

In the above diagram, the RAD client is represented in the oval. A RAD client is typically a service that
has resources that it wants protected. The client uses the AccessDecision interface to request an access
decision. It passes the resource name to protect, the operation and a list of security attributes to the
"access_allowed" or “multiple_access_allowed” operation. This is represented by line 1. From the
perspective of the client, this AccessDecision object simply returns a Boolean reply. The architecture of
the RAD framework, however, supports a flexible access decision model that allows (where desired or
necessary) significant customization of the service. What happens next is part of the RAD standard
framework.

The AccessDecision object now consults the DynamicAttributeService, allowing it to modify the list of
security attributes if necessary. This is represented by line 2.

The AccessDecision object consults the PolicyEvaluatorLocator to locate the PolicyEvaluators and the
DecisionCombinator that should be used for this resource name. A resource name may have
PolicyEvaluators and/or a DecisionCombinator associated with the resource name, in which case it returns

7
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced belong to their respective companies.

these. On the other hand, there may not be any associations, and the default PolicyEvaluators and
DecisionCombinator are returned. This operation is represented by line 3.

The AccessDecision object now invokes the DecisionCombinator's "combine_decisions" operation to make
the access decision. The resource name, operation, security attributes and the list of PolicyEvaluators are
passed as arguments to this operation. This is represented by line 4 in the illustration. The
DecisionCombinator now invokes the "evaluate" operation for each of the provided PolicyEvaluators. It
passes the resource name, operation and security attributes to the operation. This is represented by line 5 in
the illustration. Each PolicyEvaluator returns a value indicating that access is allowed, not allowed or
indeterminate. The DecisionCombinator then combines all of the PolicyEvaluator decisions and returns an
access decision to the AccessDecision object, which in turn returns the decision to the RAD client.

Administrative Model

RAD provides administrative features that allow the association of resource names with PolicyEvaluators
and/or a DecisionCombinator. It also provides for the association of an Access policy with a resource
name. The illustration below shows this model.

RAD Client

Policy Evaluator
Admin

Policy Evaluator
Locator Admin

Administrator

Administers

Applies Policy

Applies Policy

Resource Name
Policy

Associations

Resource Name
Policy Evaluator /

Decision Combinator
Associations

8
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced belong to their respective companies.

In the above illustration, two entities are depicted administering the RAD service. The first is the RAD
client. Typically, this service has resources to protect. For most situations, a RAD client's administration is
limited to associating Access policy with a resource. This is done through the PolicyEvaluatorAdmin
interface. It associates a "policy name" with a resource name. For example, a client might create a
database row and assign it a resource name. It then would associate a policy name to protect that resource
in the future.

The second entity that administers the RAD service is an administrator. This is a person, using some
administrative tool, which administers the RAD service. They do two basic administrative tasks. The first,
just as the RAD client, is to associate resource names with Access policy. This is done via the
PolicyEvaluatorAdmin interface. The second task is to associate a resource name or pattern with one or
more PolicyEvaluators and/or a DecisionCombinator. This is done via one of the three
PolicyEvaluatorLocator administrative interfaces (PolicyEvaluatorLocatorBasicAdmin,
PolicyEvaluatorLocatorNameAdmin or PolicyEvaluatorLocatorPatternAdmin).

Although it is not shown in the above illustration, it is also possible that a RAD client might want to
associate PolicyEvaluators and/or a DecisionCombinator with a resource name. This can be done via one
of the three PolicyEvaluatorLocator administrative interfaces.

9
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced belong to their respective companies.

orbLock – Architecture and Functionality

Overview
orbLock provides a complete implementation of the OMG’s Resource Access Decision Facility (RAD).
This OMG specification provides a standardized means of managing protected resources. In addition to
providing the functionality of the RAD specification, the implementation features:

! Full function default policy evaluator implementation that features:

Multiple rules per operation
Each rule can be “AND ACL,” “OR ACL,” “DENY ACL,” “Anybody” or “Nobody”
Supports time constraints by date, time and day of week
Policy caching and notification

! GUI and command line based administration tools

! GUI testing tool for testing security policies

! Auditing for all access decisions

! Authentication interface allows securing administrative tools with any customer authentication

mechanism

! Support for OMG’s Naming Service, Trader Service and stringified IOR’s in files

! Clients can access iLock via collocation (local method calls) or remote access

! Multiple programming interfaces
Standard CORBA programming
Java convenience classes for CORBA
Java iLock Interface (JII) for enterprise Java environments (with jLock product)

Product Components

The iLock software consists of multiple components that work together to support the access control
function for fine-grained resources. The major components are:

iLockRad – This is a service that implements the OMG’s “Resource Access Decision Facility”

specification.

iLockRad Administration Tool – This is a GUI tool used to manage instances of the iLockRad service.

This tool can connect to any instance of an iLockRad service. It manages diagnostics messages,
auditing, start up options, etc. It can also manage the persistence of various objects that were specified
by client programs.

iLock Security Center– This is a service that manages persistent information about resources and

security policies used by the default policy evaluator in iLockRad. This service can be shared by one
or more instances of the iLockRad service and represents the domain of resources and security policies
for those instances.

10
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced belong to their respective companies.

iLock Security Center Administration Tool – This is a GUI tool used to manage instances of the iLock
Security Center service. This tool can connect to any instance of an iLock Security Center service.
This is the tool used by security administrators to manage protected resources and their associated
security policies.

iLock Security Center Command Line Tools – This is a collection of command line tools that can

manage protected resources and their associated security policies. These tools would typically be used
for scripting the management of resources and their associated security policies.

Integrated Policy Testing Tool – The Security Center administrative tools include a graphical testing

tool for security policies. This tool can connect to any instance of an iLockRad service. It allows a
security administrator to test the results of an “access_allowed” method call. The tool allows the
administrator to specify the protected resource, the operation to perform and the security attributes to
test with.

Deployment options

Because the iLockRad and iLock Security Center services are distributed services, there are a wide variety
of deployment options. These options should be evaluated in the context of the deployment environment
and the characteristics of the application with which it is being deployed.

The iLock components can be deployed in one of three major ways:

Fully Distributed – using this deployment option, users of the iLockRad service communicate with

iLockRad via distributed invocations, and the iLockRad service communicates with an iLock Security
Center service via distributed invocations. Using this deployment scenario, many instances of
iLockRad services can share a single instance of an iLock Security Center service, thus sharing a
domain of resources and security policies.

Rules Collocated – using this deployment option, users of the iLockRad service communicate with
iLockRad with distributed invocations, and the iLockRad service communicates with a collocated
iLock Security Center service via direct method calls. Using this deployment scenario, each iLockRad
service has it own unique iLock Security Center service and hence, its own domain of resources and
security policies.

Collocated – using this deployment option, users of the iLockRad service communicate with iLockRad
via direct method calls, and this local iLockRad communicates with an iLock Security Center service
via distributed invocations. Using this scenario, many iLockRad clients (with a collocated iLockRad)
can share a single instance of an iLock Security Center service, thus sharing a domain of resources and
security policies.

Programming Interfaces

The iLock software supports three programming interfaces. They are the standard CORBA programming
interface, the CORBA convenience classes for Java and the Java iLock Interface (JII).

Standard CORBA Programming Interface

An application can use the standard CORBA IDL-based programming interface to use the iLockRad
service. By doing this, applications can be written in Java, C++, C, Visual Basic or any language that has a
supported language binding. Applications developed using this interface can utilize any functionality of the

11
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced belong to their respective companies.

“Resource Access Decision Facility,” including building custom policy evaluators, combinators and
dynamic attribute services.

CORBA Convenience Classes

Applications written in Java can use the CORBA convenience classes. Although this programming
interface maintains the style of CORBA programming, it abstracts away knowledge of the location service
programming (Naming, Trader), remote verses collocated invocations, and the creation of data types such
as security attributes and resource names.

Java iLock Interface (JII)

Applications written in Java can use the “Java iLock Interface” (JII). This is a pure Java implementation
that strips away any knowledge of CORBA. This includes any knowledge of ORB’s, location services,
CORBA data types, etc. The JII introduces addition functionality that allows the development of custom
policy evaluators and dynamic attribute services that reside in the client process rather than in the iLockRad
service. This can be a more flexible and better performance approach than running those components
remotely.

12
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced belong to their respective companies.

Using orbLock’s RAD – A Simple Use Case

In this section, we will describe a simple scenario where an enterprise wants to protect access to a
collection of protected resources. For the example, we will describe a simple document management
system, and the documents are the resources that we want to protect. In this simple scenario, we will
assume that there will be two types of protection for reading documents. Some documents should be
readable by anyone, and some should only be readable by management. When the document is created, the
author will decide who may read it. In addition, the only people that will be allowed to update a document
will be the author and a super user (an omnipotent system administrator). The remainder of this section
will describe the steps for designing and implementing such a system.

Resource Names

Since individual documents will be the protected resource, we must design a naming scheme for these
protected resources. Resource names consist of two parts, a naming authority and a set of name value
pairs. For this scenario, we will pick a naming authority of “SomeCompanyDocuments.” We will have
two name value pairs. They will be Author=xxx and Title=yyy. Note: the value xxx will be the access id of
the author.

Security Policies

For this scenario, we will need only two security policies. The first will be for public access documents
and the second will be for management access documents.

Let’s name the first policy “PublicAccess.” This policy should allow anyone to read a document, but only
the author and the administrator may update the document. Let’s name the second policy
“ManagementAccess.” This policy should allow anyone in management to read a document, but only the
author and the administrator may update the document.

A security administrator would use the iLock Security Center administrative tool to define these two
policies. The following window was used to create the “PublicAccess” policy. The selected rule for
updating requires that the user must have an access id of “the_author” or a role of “administrator.” It
should be noted that there is no such author with an access id of “the_author.” We will discuss later how
this is used.

13
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced belong to their respective companies.

In a similar manner, the “ManagementAccess” policy will be defined to allow anyone with the role of
“management” to read documents, and only the author and the administrator to update documents.

Programming the Document Management System

In the development of the document management system, the developers must utilize iLock in two key
areas. Our examples here will use the “Java iLock Interface” (JII).

The first area is when documents are created, an associated resource name should be created, and it should
be associated with a security policy. This can be accomplished with code such as the following.

AccessManager am = new AccessManager(); // this is done once in initialization

// this names the PublicAccess policy
String [] policies = new String[1];
policies[0] = "PublicAccess";

// this creates the resource name for the new document
 ResourceComponent [] comps = new ResourceComponent[2];
 comps[0] = new ResourceComponent("Author", "bburt");
 comps[1] = new ResourceComponent("Title", "Using iLock for Fine-grained Access Control");
 Resource res = new Resource("SomeCompanyDocuments", comps);

// this sets the policy for the resource
am.setPolicies(res, policies);

The second area is when documents are read or updated; iLock should be consulted to get an access
decision. This can be accomplished with code such as the following to test for update.

AccessManager am = new AccessManager(); // this is done once in initialization

14
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced belong to their respective companies.

// this creates the resource name for the document being requested
 ResourceComponent [] comps = new ResourceComponent[2];
 comps[0] = new ResourceComponent("Author", "bburt");
 comps[1] = new ResourceComponent("Title", "Using iLock for Fine-grained Access Control");
 Resource res = new Resource("SomeCompanyDocuments", comps);

// test for access allowed, notes attributes obtained from a security infrastructure
boolean value = am.accessAllowed(res, “update”, attributes);
if (value == true) {
 // allow update access to the document
} else {
 // deny update access to the document
}

Changing Security Policy

Suppose it is decided that the security policy that determines who can update documents should be
changed. This merely requires that the iLock Security Center administration tool be used to change the
policy. No changes are required of the document management software to change the security policies.

Dynamic Attribute Service

You may have noted that we have not discussed how the special access id, “the_author,” is used. In the
scenario described above, the author’s access id is “bburt” and not “the_author.” This is where a custom
dynamic attribute service can be developed. First of all, a new Java class, that we will call
DocumentsAtttributeService, will be developed. It will look somewhat like the following:

class DocumentAttributeService implements DynamicAttributeService {

 public SecurityAttribute [] getDynamicAttributes(Resource resource,
 String operation,
 SecurityAttribute [] input_attributes) {

// The code will examine the resource, extract the author, and determine if the
 // author’s access id is in the input_attributes. If the author is in the input_attributes,
 // the access id of “the_author” will be added to the array of attributes and returned.
 // If not, the array of attributes will not be modified
 }
}

The system can set the dynamic attributes service by executing the following code:

AccessManager am = new AccessManager(); // this is done once in initialization
am.setDynamicAttributeService(new DocumentAttributeService());

The iLock software will consult the “getDynamicAttributes” method each time an access decision is made,
and only when the author of the specified resource is using the system will the resource be made available
for updating.

By using this technique, we were able to design the system with only two security policies. Otherwise, it
might have been necessary to create separate policies for each author.

15
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced belong to their respective companies.

Testing Security Policies

Security administrators will want a way to test security policies. The iLock Testing Tool provides a
convenient method for testing security policies. For example, to test the “PublicAccess” policy described
in the previous sections we might use the testing tool as follows:

Since we have defined a security attribute that has the “administrator” role, access should be allowed.

16
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced belong to their respective companies.

Summary

The issues surrounding the privacy of personal and business information are increasing. The “access
control” aspect of security systems is of prime importance in satisfying the demands for these privacy
issues.

The OMG’s “Resource Access Decision Facility” specification was designed to address the issues of access
control for fine-grained resources. The iLock product provides a robust implementation of this
specification that can be used in business systems to protect resources without the need to embed security
policies within the business logic. Just as iLock can be used to protect business resource, it can just as
easily be used in infrastructure products to provide a robust access decision framework.

orbLockTM also includes a CORBA Security Service (CSS) that can be used to provide authentication and a
source of user identity and privilege attributes. Additional information and evaluation copies of 2AB’s
orbLockTM software can be obtained at www.2ab.com.

For more information contact:

2AB, Inc.
1700 Highway 31
Calera, Alabama 35040

877.334.9572 (toll-free)

sales@2ab.com

	Introduction
	Security Functionality Overview
	Authentication
	Message Protection
	Access Control
	Auditing

	Access Control Overview
	Infrastructure Based Access Control
	Application Level Access Control

	OMG’s Resource Access Decision Facility (RAD)
	Introduction
	RAD Interfaces
	Access Decision Model
	Administrative Model

	orbLock – Architecture and Functionality
	Overview
	Product Components
	Deployment options
	Programming Interfaces

	Using orbLock’s RAD – A Simple Use Case
	Resource Names
	Security Policies
	Programming the Document Management System
	Changing Security Policy
	Dynamic Attribute Service
	Testing Security Policies

	Summary

