

1
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

The Resource Access Decision Facility

In Search of an Architecture for Enterprise Access Management

www.2ab.com

Overview

Information is distributed; when there is a need to access medical, financial, legal or criminal information
about a person, the task is ominous. The same is true of corporate and government information. The
sources of the information are vast, and the changing environment – mergers & acquisitions in the
commercial world and the need to collaborate between agencies and establish coalitions across
governments – creates a catalyst for providing as much information as possible on-line. This fact makes
distributed object (component) technology particularly appropriate for the development of a service
architecture that accommodates identification of people, location of information about people and
controlled access to such information.

Increasingly, the biggest problem that organizations face is the management of the security infrastructure
that controls access to sensitive and/or confidential information. It is important to understand that there are
many aspects of Security. Securing a network from unauthorized access is important but will do very little
to control access to information that is classified and/or confidential when a person already has access to
the network. Access Control ensures that once a person is identified and provided entry to your network
that they are only allowed access to the information that they are authorized to see. These security policies
are often based on roles, clearances, entitlements and/or relationships of (or between) individuals and/or
groups of individuals.

Managing secure implementations through a well-defined architecture that respects separation of concerns
is crucial to implementation of a security architecture that can be understood by business leaders, managed
by security administrators and audited against increasingly stringent requirements of legislators and
consumers. This paper will focus on only a single aspect of security - the necessary capabilities of a
framework that facilitates access control decisions based on application domain factors while maintaining
the separation (or de-coupling) of authorization logic from application business logic. This is the area that
has traditionally been known as “application-level” security. Government, healthcare, financial and
telecommunication domains require a framework that supports fine-grain resource control as demanded by
the privacy and confidentiality constraints of federal legislation.

Unfortunately, application developers (ISV or end-user) have enough challenges meeting the functional
requirements of providing business software; they do not want to spend precious development resources on
access control logic, nor is this their area of expertise. Furthermore, enterprises deploying business
applications cannot continue the proliferation of access control mechanisms – each often unique to the
application. They need to define enterprise policies and then define how those policies apply to control of
the secured resources stewarded by their business applications. Users want this to be done consistently
across all software components (whether purchased or built internally). That is, a standardized access
control framework is necessary so that access control can be “plugged in” to business applications. The
Object Management Group has developed a standard for fine-grain access control that provides such a
framework. This paper explores the Resource Access Decision Facility (RAD) and how it can be leveraged
to simplify Enterprise Access Management.

2
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Architecture for Enterprise Access Management

The problem addressed by the Resource Access Decision Facility (RAD) is not a new one. The catalyst for
this facility was a realization that access control was becoming increasingly unmanageable in enterprise
application integration environments. Vendors are spending an increasing percentage of their development
time building access control into their applications. This is accomplished in a variety of ways with the
obvious problem that each time an enterprise purchases a software component, they are also purchasing an
access control mechanism that must be deployed and administered as part of their security infrastructure.
This fact has made it impossible for enterprises to design and implement consistent application resource
access control policy. The requirements of many government regulations, such as the U.S. Health
Insurance Portability & Accountability Act (HIPPA) and U.S. Title 47 in telecommunications, make it
mandatory that this problem be solved.

The OMG Resource Access Decision Facility (RAD) provides for the de-coupling of authorization logic
from application logic, allowing applications with such requirements to be independent from a particular
access control policy. RAD provides a number of key design features that will be discussed in this paper.
It is important to understand that although the Resource Access Decision Facility was initially based on the
CORBA platform, the model and design approach can be successfully used in any distributed computing
environments. 2AB’s iLock Security Services product suite leverages this model for fine-grain access
control within JAVA and J2EE (jLock), Web Services (webLock) and CORBA (orbLock) application
environments.

The RAD design extends the underlying security infrastructure that provides authentication of users and
provides the ability of an application to protect any resources stewarded by application logic. It supports
the naming of resources and the definition of patterns for resource names in a standardized format to
facilitate management of fine-grain access control policy at the level of granularity required by an
application end-user community. It also allows the definition of arbitrary operations on these resources and
the independent protection of those operations. The framework provides administrative interfaces that
allow access control policy engines to be “plugged in,” thus accommodating integration of existing policy
engines and/or user-written policy evaluators. A “plug-in” can also provide dynamic security attribution to
support policy that is based on transient relationships. A typical example of a dynamic attribute is “primary
care physician”; a security attribute that is based on the relationship between a physician and the person for
which clinical information is requested at a point in time. This “plug-in” framework approach enables
elaborate and consistent access control policies across heterogeneous software components. The RAD
framework was designed to accommodate environments where multiple policies govern access to a
resource (such as an administrative policy and a legal policy). In such environments, it is necessary to
understand how to combine policies to make access decisions. This feature is also part of the RAD “plug-
in” architecture.

Why do we need RAD?

Before we explore the capabilities of RAD in more detail, let’s look at why we need such a facility and how
these capabilities extend what is provided by a Security Service. A typical distributed computing solution
integrates a variety of technologies (see Figure 1).

3
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Figure 1 –Typical Distributed Computing Solution

Access control policy can be injected at any point in the architecture. The RAD facility was originally
intended to be used by services providing application features, but increasingly RAD facilities are being
used on the client side where transitions are made between Web and J2EE and/or CORBA technologies.
It has proven particularly useful for environments where data defined in Extended or Hypertext Markup
Languages (XML or HTML) documents contain multiple secured resource that may have diverse access
control requirements.

In service architectures, an operation on an object may need to reference many secured resources to provide
the requested service. This cannot be secured with a traditional security service. It is also common to
design abstract interfaces where the identity of the secured resource is not known until the operation is
invoked. This is because the information necessary to identify the secured resource is carried in a
parameter value. For example, different parts of a government file may require diverse clearance levels
because of the sensitivity of the information. These security policies may need to change dynamically in
war situations. A common health related example is a request for a clinical observation – a clinical
observation is an abstract concept that may be realized as many diverse secured resource types that can be
accessed via a common interface. The sensitivity of a ‘clinical observation” is not consistent; for example,
Anthrax related information may be more sensitive than other observations. In addition, Web Services,
EJB’s and/or CORBA objects often function as wrappers around legacy systems that do not lend
themselves easily to object-oriented access control mechanisms. It is also true that security requirements in
many domains mandate domain-specific factors such as the relationship between a user and the person for
whom information is requested. Increasingly, these requirements are causing vendors to embed access
control systems within their business applications. These complex security requirements mandate access

servlet

HTML doc
 and/or
 XML data

Web
Server

HTTPS

B
r
o
w
s
e
r

router

Web
Server
servlet

CORBA / EJB
container

IIOP

“people
centric”

“computer
centric”

VB client

IIOP

COM/CORBA Bridge

XLS

DTD

legacy

4
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

control policies that are more sophisticated and of finer granularity than the general ones used in security
services of existing distribution platforms.

What is RAD?

RAD is a framework that facilitates access control decisions based on application domain factors while
maintaining the separation (or de-coupling) of authorization logic from application business. The RAD
facility is not a replacement or substitution for an infrastructure security service. The RAD service is used
in conjunction with other security infrastructure to provide enhanced access decisions. Access to
authenticated credentials from a security infrastructure that supports delegation is the foundation that any
application needs to provide application-level security and is required in a RAD environment. The
designers of the RAD service wanted to be certain that it could be deployed with diverse security
infrastructures. For this reason, the Resource Access Decision Facility and the underlying security
infrastructure are loosely coupled. The only dependency that exists is that the application must be able to
extract authenticated credentials (security attributes) from the security service and format them as an OMG
Security::AttributeList. Vendors, such as 2AB, provide such translation tools; the most common being the
extraction and transformation of credentials carried by digital certificates. Usage of a RAD facility removes
the requirement that the application developer understand which security attributes are necessary to allow
access to a secured resource. That is, the access control mechanism may be developed, purchased and
administered separate from the application and integrated at deployment time.

This RAD approach allows secured resources to be named by the application. Those names are exposed to
the RAD policy engine (potentially mapped by the vendor to the native format of a resource name in the
policy engine). This allows an enterprise a consistent way to identify and administer access policies across
diverse application environments. It also means that different enterprises (or organizations within an
enterprise) may make different choices in terms of the policy engine that they use with the RAD
framework. In fact, multiple policy engines may be used with a single implementation of the RAD
framework as a result of the support for multiple policy evaluators.

Figure 2 – RAD Scope

Scope

Target
objectclient

Access
Decision

Object

DynamicAttributeService

1) get_medications();

2)access_allowed(accessid=murphy,
resource=“Last-Burt.First-Carol”,
operation=view_experimentals)

PolicyEvaluatorLocator

DecisionCombinator

PolicyEvaluator
PolicyEvaluator

PolicyEvaluator

6) evaluate()

4) get_dynamic_attributes()

3) get_policy_decision_evaluators()

5) combine_decisions()

7) yes8) yes

Application Scope RAD Scope

5
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

To perform application-level access control, an application (ADO client) extracts credentials from the
security infrastructure, requests an authorization decision from a RAD facility and enforces that decision.

A simple interface between the application and the authorization service is used. There are two operations
available to the ADO client: access_allowed() and multiple_access_allowed(). An application programmer
only needs to make a single invocation on the authorization service in order to obtain a decision (or set of

decisions).

A RAD-compliant access control environment divides responsibilities as follows:
! Components “name” their secured resources and the operations they perform on them
! The underlying security service provides the component access to authenticated credentials
! Users administer security policy for the named resources (via a policy engine accessible by RAD)
! Components call access_allowed() providing the ResourceName, Operation and SecAttributes
! RAD makes the access decision!

A resource name can be associated with any valuable asset of the application. The RAD does not attempt to
interpret semantics of the resource name or the operations that can be performed on them.

AccessDecisio

DynamicAttribut
Service

Decision
Combinator

PolicyEvaluator

PolicyEvaluator
Locator

1

1..*
1

1..*
1..*

1..*

1..*

ADO client

Policy

SecuredResourc

ResourceName

PolicyName

consults

consults

consults

represented by

represented by

0..1

defines
access policy

has Operation
1..*

1

0..1

0..1

0..1

1

1

1

Access Decision Model

Scope of the RAD

1

locates
evaluates locates

1

1

consults

1

1

consults

Figure 3 – Access Decision Model

6
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Figures 3 and 4 provide an overview of the responsibility of the internal RAD objects. The
AccessDecisionObject (ADO) receives requests for authorization decisions from RAD clients. From an
application perspective, the ADO is the only exposed interface, however, internal to the RAD, the ADO
consults other objects (each of which may be replaced using the administrative interfaces) to make access
decisions. The ADO first consults a DynamicAttributeService that determines whether or not it is
appropriate to modify the security attributes of the principal given the context of the access request. The
DynamicAttributeService may add or remove security attributes that are then used for the access decision.
The ADO also consults a PolicyEvaluatorLocator that locates the PolicyEvaluator(s) and the
DecisionCombinator that must be consulted to make the access decision for the secured resource. The role
of the DecisionCombinator is to combine results of the evaluations made by PolicyEvaluator(s) into a
definite yes/no decision. The combinator calls the evaluators so that the most efficient method of making
decisions can be utilized. It is expected that combinators that implement simple “AND” or “OR” policies
will be provided with products, however, the user may replace default combinators with sophisticated
implementations that use precedence logic.

Of course, there is also an administrative aspect to the RAD that provides the “plug-in” features mentioned
earlier (see Figure 3). Some of the advanced RAD features that are available through the administrative
interfaces are:

! Provides the ability for secured resources to be grouped for the purpose of defining access control rules

(Patterns)
! Supports dynamic security attribution to allow access policy to include the notion of allowing

decisions based on relationships or transient roles (DynamicAttributeSevice)
! An interface that allows multiple access control policy decisions governing access to the same resource

to be reconciled (DecisionCombinator)
! Ability to Plug in Policy engines! (PolicyEvaluator)
! Custom wrappers for existing vendor products and user legacy solutions
! Custom built for the way resources are named in specific technologies (CORBA IDL, XML

Schema)

7
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

PolicyEvaluator
Admin :

PolicyEvaluator

PolicyEvaluator
LocatorAdmin :
PolicyLocator

RAD client

Policy

SecuredResource

ResourceName

PolicyName

0..*

represented by

assigns
access policy

has

Operation

1..*

1

0..1

1

1

1

Administrative Model

Scope of the RAD Service

Administrator

applies
policy

associates

Decision
Combinator

PolicyEvaluator

associates

associates

represented
by

administers

0..1

0..1
1

1 1

1..*

0..*

1

administers

Figure 4 - Administrative Model

Summary

The specification for the RAD facility is available from the OMG1. This specification, originally targeted
to meet the requirements of the healthcare domain for privacy and confidentiality, is receiving wide
acceptance in other domains such as defense, telecommunications and finance. Products, such as 2AB’s
iLock Security Services suite, leverage this specification for fine-grain access control in multi-platform
environments.

1 Object Management Group Resource Access Decision. Document formal/01-04-01. January 2001.

8
Copyright 2001, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

How do I get further information?

This White Paper has intentionally only scratched the surface of RAD. Further information can be obtained
by phone, fax or e-mail

Phone: USA +1 877 334-9572
Fax: USA +1 205 621-7455
E-mail: info@2ab.com.com

Comments on this White Paper or on the iLock Security Service suite of products are welcome. Please use
the above contacts.

General information about iLock Security Services or any other 2AB products and professional services
can be found at:

Web: http://www.2ab.com/

General information about the Object Management Group and CORBA can be found at:

Web: http://www.omg.org/

mailto:dais@iclosl.com
http://www.daisorb.com/
http://www.omg.org/

	Overview
	Architecture for Enterprise Access Management
	Why do we need RAD?
	What is RAD?

	Summary

