

1
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Using OMG's Resource Access Decision (RAD) Facility Model
for Governance-Based Access Control (GBAC)

August 2005
www.2ab.com

Introduction

Access management is a simple concept. Every business has information that needs to be protected from
unauthorized disclosure. To protect information, companies define policies - often mandated by legislation
- that govern who can access specific classes of business and/or personal information. For example, if a
police investigator seeks to access transaction data related to a suspected terrorist from a private bank, they
should have authorization to do so, however, they should not be authorized to access the same information
about someone who is not suspected of any illegal activity. That is, there is a policy that specifically
governs the release of information collected about individual to other individuals. Or is there? The answer
today is: “Probably not.” What exists are written policies (or a law) related to disclosure of broad classes
of business and personal information. But often individual data is not specifically classified within
organizations. Requests for information flow through individuals within an organization. The policy is
enforced only because human beings are skilled at generalizations; that is, we expect someone in authority
to be able to classify an ad hoc request for a particular piece of information and make a decision.

Access Management software has a simple goal. It allows the human who previously acted as a guardian
of sensitive information to be removed from the process without loss of access control. This sounds
simple, but most businesses are struggling with the implementation of access management as they integrate
and extend their applications. This is because machines cannot classify information or make access
decisions unless they are explicitly programmed with algorithms to accomplish this. When you take the
responsibility for access decisions away from human beings, it becomes necessary to insert software guards
into your applications.

CGI has recently released a whitepaper titled "Governance-Based Access Control: Enabling improved
information sharing that meets compliance requirements," introducing a new model for access control.
This model, called Governance-Based Access Control (GBAC) is focused on the classification of
information assets for the purpose information sharing in an environment where:

• Many organizations may require access to information

• Information may be accessed by, or shared with, external users

• Everyone may be subject to compliance with multiple authorities and jurisdictions

In a previous whitepaper, "Using jLock's Java Authentication and Authorization Service (JAAS) for
Application-Level Security,” we described a systematic approach to using JAAS to manage the complexity
associated with software access management. We explained the JAAS service-oriented architecture
(SOA), which maintains a clean separation of concerns between application functionality and access
management and discussed the types of JAAS features that a scalable JAAS implementation should
support. We also wrote a complementary paper showing how JAAS could be used for GBAC.

In this whitepaper, we explore the Governance-Based Access Control (GBAC) model and use the scenarios
presented in the CGI whitepaper as the basis of the sample access policy and the coding examples. The
OMG RAD model is defined in IDL. This enables an implementation to be used from a variety of
programming environments. The examples here are in Java. We hope the 2AB papers will help you
understand the GBAC model and how existing standards and tools can be leveraged to implement it.

2
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

What is the Resource Access Decision Facility?

The OMG’s Resource Access Decision (RAD) facility provides for the de-coupling of authorization logic
from application logic, allowing applications with such requirements to be independent from a particular
access control policy. RAD provides a number of key design features that will be discussed in this paper.
It is important to understand that although the Resource Access Decision facility was initially based on the
CORBA platform, the model and design approach can be successfully used in any distributed computing
environments. 2AB’s iLock Security Services product suite leverages this model for fine-grain access
control within JAVA and J2EE (jLock), Web Services (webLock) and CORBA (orbLock) application
environments.

The RAD design extends the underlying security infrastructure that provides authentication of users and
provides the ability of an application to protect any resources stewarded by application logic. It supports
the naming of resources and the definition of patterns for resource names in a standardized format to
facilitate management of fine-grain access control policy at the level of granularity required by an
application end-user community. It also allows the definition of arbitrary operations on these resources and
the independent protection of those operations. The RAD framework was designed to accommodate
environments where multiple policies govern access to a resource (such as an administrative policy and a
legal policy). In such environments, it is necessary to understand how to combine policies to make access
decisions. This feature is also part of the RAD “plug-in” architecture. The framework also provides
administrative interfaces that allow access control policy engines to be “plugged in,” thus accommodating
integration of existing policy engines and/or user-written policy evaluators. A “plug-in” can provide
dynamic security attribution to support policy that is based on transient relationships. A typical example of
a dynamic attribute is “primary care physician”; a security attribute that is based on the relationship
between a physician and the person for which clinical information is requested at a point in time. This
“plug-in” framework approach enables elaborate and consistent access control policies across
heterogeneous software components. The RAD model addresses many of the issues faced by organizations
that are seeking to implement application security.

Application security must address any security-related requirements not provided by the runtime security
infrastructure. In the area of access management, any requirement to restrict a) the usage of application
features or b) access to business and personal information is part of “application security.” Often these
restrictions on access to sensitive information are based on legislation. For this reason, the Governance-
Based Access Control Model is being progressed as a means to classify information for the purpose of
assigning access policy. The CGI whitepaper "Governance-Based Access Control (GBAC)" provides an
excellent overview of this model and is the basis of the examples in this whitepaper.

There are overviews of the Resource Access Decision facility available on the OMG Web site
(www.omg.org), as well as whitepapers available from 2AB. For that reason, we will assume the reader
has some familiarity with the RAD model, and we will focus on how the RAD model can be leveraged to
provide the fine-grain access control requirements of “application security” in an environment that uses the
Governance-Based Access Control (GBAC) model.

The Resource Access Decision facility and the underlying security infrastructure used for authentication are
loosely coupled. For this reason, the application (or product provided to the application) must be able to
extract authenticated credentials (security attributes) from the security service and format them as an OMG
Security::AttributeList. Vendors, such as 2AB, provide such translation tools; the most common being
credentials acquired via login() or the extraction and transformation of credentials carried by digital
certificates.

This paper will focus on how a Java developer uses a commercial implementation of the OMG RAD model
in conjunction with the GBAC model. We will show how the RAD model can be used to support the
context-sensitive policy requirements of GBAC. We will also explore how user identity and access
policies are managed using iLock Security Center administrative tools. We will outline the steps you need
to take to use iLock with the GBAC model.

3
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Classification of Information

Each classification of information is mapped to an OMG Resource Name - as defined in the OMG
Resource Access Decision (RAD) facility specification. For this reason, they show up as "RAD
Resources" or simply "Resources" in the iLock administrative tool. Using this specification allows you to
leverage a "NamingAuthority" for each group of resources. For example:

Note: RAD resource names are
structural. This structure maps
neatly to the GBAC
classifications as it supports the
ability to assign attributes for
information classifications that
are intuitive, visible in the
names and can be mapped easily
to an XML schema. A RAD
resource is defined for each
GBAC classification as shown
in Table 1 of the GBAC
Whitepaper.

This iLock user interface
supports the OMG RAD
concepts, which includes
structural naming.

 Defining a GBAC Classification as a RAD Resource

Viewing the GBAC Classifications as RAD Resources

4
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Classification of people who may be required to access information

The classification of people in GBAC is based on roles. In the OMG’s Resource Access Decision (RAD)
facility, a role is a type of security attribute that may be assigned to users.

The OMG’s Resource Access Decision facility uses a
structural representation for security attributes. This
structure includes a field called a Defining Authority
Name. You have the option of creating unique names
(Defining Authorities) for the different agencies that
will access information classified in the GBAC model.
This would allow security attributes (Access IDs,
Groups and Roles) to be scoped to the organization
that defines them. If you choose to do this, you should

be aware that "roles" with the same name created under two different Defining Authorities are distinct
security attributes, and the appropriately scoped role must be utilized in the access policy. This scoping of
names would, of course, be useful if different agencies used the same role name but with different
expectations regarding the access it would enable. For this example, we will keep it simple and use the
default Defining Authority of "2ab" for all security attributes.

Here we see how GBAC concepts map to the OMG RAD specification concepts.

After defining authorities are created, roles are defined
under them. By selecting and right-clicking "Role"
under the 2ab defining authority, the New Role dialog
box will allow you to type in a Role Name. Groups
can be defined in a similar manner. These Security
Attributes will be used in the GBAC rules created for
each class of information.

Of course, you will also need to define Users. The iLock Security Center Administration tool allows you to
create users and assign passwords. Password format requirements can be set using the Preferences menu.

5
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

The Users/Attributes screen after users, groups and roles have been created.

We assign GBAC roles as follows: John Davis is a Compliance Officer, Mary Jones is an Intelligence
Analyst and James Howard is a Police Investigator.

 James Howard has the Role PoliceInvestigator and is in the Group FederalPoliceAgency

6
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Definition of GBAC Rules for Information Access

Access Control rules are defined in GBAC based upon the roles of individuals and context information
related to the information. The rules we define below are outlined in Table 2 of the GBAC whitepaper.
By returning to the RAD Resource tab, selecting a RAD Resource (these are the GBAC classifications) and
right-clicking, you can bring up the Policy Editor dialog and create one or more "rules" as shown below.

To create Rule 1, as defined in Table 2 of the GBAC whitepaper, right-click on the Roles under Security
Attributes and select the correct role for the Rule.

Note that the role is structural in the OMG specification. Drop down boxes allow you to select from
previously defined roles.

Select the correct Role for the GBAC rule

7
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Next, we select the Entitlements Rules tab and enter the "additional criteria" from the rule as shown
below.

This completes the creation of Rule 1 from the GBAC white paper. The final rule is shown in the rightmost
panel below:

8
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

The policy states:

Anyone who has been assigned the role "PoliceInvestigator" or "IntelligenceAnalyst" as defined
by "2ab" is allowed access (to the named resource) with the constraint that the "SubjectName"
(which is of datatype String) is Equal to "John Doe."

Below is the example of another GBAC rule defined in iLock. The rule is stated as:

Anyone who has been assigned the role "IntelligenceAnalyst" or "PoliceInvestigator" or
"Compliance Officer" as defined by "2ab" is allowed access (to the named resource) with the
constraint that the "TranType" (which is of datatype String) is Equal to "Cash" and the "Amount"
(which is of datatype Decimal) is Greater Than 10000.

Note that these policies are defined so that the local authority is always allowed access

9
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Using the Java iLock Authenticator as part of a GBAC solution

Because the OMG RAD is an authorization service that is loosely coupled with the underlying
authentication service, a variety of authentication APIs may be supported. Leveraging an architecture that
supports ‘plug-ins’ for authentication ensures that applications can be independent of the underlying
authentication mechanism. This has the advantage that new or revised authentication mechanisms can be
plugged in without modifying the application code. That is, management of User IDs and Passwords (or
other methods of authentication such as digital certificates) are removed from the application’s concern.
Since we are providing sample code in Java, we will leverage the dialog-based User ID and Password
authenticator that is supplied with the jLock product and leverage the Java iLock Inteface (JII) API for
authentication.

The first thing you need to do is specify the iLock security center you are using. This is done by
initializing a LoginManager (and AccessManager) with properties that set the instance name of the Security
Center repository that holds identity and policy information.

 try {
 Properties props = new Properties();
 props.setProperty("jii.security.center.instance", "cgi");
 lm = new LoginManager(props);
 am = new AccessManager(props);
 }
 catch (Exception e) {
 System.out.println(e.toString());
 System.exit(1);
 }

Initializing the LoginManager and the AccessManager

This is the Java code that prints “Hello iLock World” if user authentication succeeds. The method that
your application needs to invoke to use a LoginManager that uses a dialog box authenticator is shown in
bold font.

 try {
 if (lm.loginFromDialog("") == true) {
 System.out.println("\nHello iLock World!\n"); }
 else {
 System.out.println("*** Login Failed ***");
 }
 } catch (Exception e) {
 System.out.println(e.toString());
 System.exit(1);
 }
 ……

 Authentication Code Sample

That is all the code and configuration you need! At the point where the lm.loginFromDialog("") is
called, the following dialog will appear.

10
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Type in a User ID and Password as shown above and click OK. iLock will authenticate the user.

Assuming you typed a valid User ID and Password, the example program results will, as you might expect,
look like the following:

Authentication Succeeded

Of course, if you should fail to provide a valid User ID and/or Password, you will see this:

Authentication Failed

The HelloiLock demo program has obviously written no code to manage Users and Passwords or to do the
work required to authenticate the user (in this case verify the password). That is the great thing about the
RAD architecture; just “plug in” iLock, and it securely manages all that for you! iLock also ensures that
the password is never available in clear text. iLock securely stores and transmits password information -
even if you are not using an encrypted transport protocol.

11
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Now we are ready to explore authorization in the RAD model. To understand the RAD Authorization
model, you must first understand a little more about what happens when you authenticate. When the user
(mjones in the example above) was authenticated, an array of SecAttributes was created. These security
attributes are defined by the OMG Security Service and utilized by the Resource Access Decision (RAD)
facility in evaluating access policy. The security attributes are structural in form and there are three defined
types. The types are AccessId, Group and Role. The “security attributes” or “credentials” are associated
with the User at the time of authentication. During the authentication process, the jLock authenticator
acquires the credentials from the security center and associates them with the user by creating the
appropriate SecAttribute array. A user may always be able to prove their identity, but their credentials (i.e.
SecAttributes) may change over time. For this reason, security access policy is defined in terms of the
security attributes that are associated with the user at the time identity was authenticated. These are the
fundamental building blocks of access policy. In the section above, you can see that the user, Mary Jones,
has the following jLock security attributes. Note that these attributes are scoped by a "Defining Authority"
that indicates the source of the attribute. In this case, we use 2ab as the Defining authority. It would be
possible, however to define security attributes with differing defining authorities. This would be consistent
with the GBAC model where they might be defined and used in policy by multiple legal entities.

• AccessId: 2ab_uids: mjones

• Role: 2ab: IntelligenceAnalyst

• Group: 2ab: FederalFinancialReporting&AnalysisCentre

If you add the following code to the example, you can see that the LoginManager allows navigation to a
SecurityAttribute [] that manages the set of SecurityAttributes.

……
 try {
 SecurityAttribute [] attrs = lm.getSecurityAttributes();
 for (int i = 0; i < attrs.length; i++) {
 System.out.println ("attr" + attrs[i].toString());
 }

 Code to display the Security Attributes associated with the authenticated user

Running with this code, you will see the output below following authentication:

12
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Using RAD Authorization for GBAC

The OMG’s Resource Access Decision (RAD) facility was designed to enable the support of complex
policy models such as CGI's GBAC. Because Resource Names are structural, they map neatly to the
concept of Information Classification as outlined in the GBAC whitepaper. We do not explore the
capabilities in this demo, but there is also the ability to define resource classifications based on name
patterns and assign policy to a group of resources (GBAC classifications) in this manner. Unfortunately,
like GBAC, the complexity of the RAD model makes it more difficult to grasp the power of the concepts
(and how they can be applied) with some analysis. Information classification is a major hurdle to the
adoption of a model such as the OMG RAD for authorization. Assuming this classification has been done,
application of RAD to GBAC is straight forward.

 ResourceComponent [] ic = new ResourceComponent [7];
 ic[0] = new ResourceComponent("Type", "IntelligenceData");
 ic[1] = new ResourceComponent("Jurisdiction", "Federal");
 ic[2] = new ResourceComponent("CollectionAuthority",
"ProceedsofCrime&TerroristFinancingAct");
 ic[3] = new ResourceComponent("CollectionReason", "SuspiciousFinancialTransaction");
 ic[4] = new ResourceComponent("SecurityDesignation", "ProtectedB");
 ic[5] = new ResourceComponent("DisclosureAuthority", "PrivacyAct");
 ic[6] = new ResourceComponent("DispositionAuthority", "NationalArchivesAct");
 gbac_class = new RadResource("FederalFinancialReporting&AnalysisCentre", ic);

 EntitlementData ed = new EntitlementData[1];
 ed[0] = new EntitlementData("SubjectName", "John Doe");

 if (am.accessAllowed(gbac_class, "access", attrs, ed)) {
 System.out.println(" Granted access to \n" + gbac_class.toString() + "\n ");
 } else {
 System.out.println(" Denied access to \n" + gbac_class.toString() + "\n ");
 }

 Code to protect access to the “IntelligenceDataProtectedB” information

It is that simple to add GBAC authorization to your application. We have provided demonstration
programs that you can run to see how this works. The demonstration programs request access to all of the
GBAC resource classifications named in the GBAC whitepaper. The sample code sets the subject name as
John Doe, the transaction type to cash and the amount to $12,000. Of course, you are free to use the
samples as patterns for your own development.

When you run the demonstration program and authenticate using mjones as the User ID, you will see the
following dialog showing the resources that Mary Jones, an IntelligenceAnalyst is allowed to access.

13
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

 Mary Jones, an IntelligenceAnalyst, requesting access to John Doe's information

However, if you run the demo and authenticate using jhoward as the User ID, you will see that James
Howard, a PoliceInvestigator, is allowed to access the following classes of information:

14
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

 James Howard, a Police Investigator, requesting access to John Doe's information

All of the tools for creating and managing the access policy are provided by iLock. The iLock architecture
supports dynamic policy updates that take effect immediately, so applications do not need to be restarted
when access policies change. iLock also supports remote policy administration.

15
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Summary

The trend towards a service-oriented architectural approach to dealing with application-level security is
evident in recent analyst reports. For example:

META Group predicted in late 2003: “as businesses begin to put more focus on
design for application securability and service oriented architecture, application-

specific security mechanisms will migrate to infrastructure.”

An OMG RAD-based model - supported in most of the iLock products - provides APIs that enable you to
authenticate and easily integrate access control checks within your business applications. iLock supports a
pluggable architecture that allows you to select your authentication technology based upon your
requirements for authentication (userid password and/or certificates). It also allows you to leverage
existing repositories you may have for users, groups and roles. Of course, you have the flexibility to
support the sophisticated access policy required by legislation and your corporate policies for governance
based access control.

Utilizing the RAD model, your business developers simply insert AccessManager calls (Software Guards)
at the points in the software where sensitive resources are exposed. This Guard consults with the iLock
Access Manager who evaluates the policy and advises the Guard on allowing access. The OMG RAD
architecture enables many different policy models to be leveraged by a Java business application.

RAD supports a service-oriented architecture for authentication and authorization

 The SOA model is supported in jLock, c/Lock, orbLock and webLock!

16
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Challenge 2AB!

Are you still not sure if jLock can help with your GBAC requirements? Challenge us to prove it. Send us
four or five examples of your access management requirements. We’ll configure iLock with policies you
can use and send you an evaluation copy of iLock complete with a working demo so you can see how to
leverage iLock within your application. We’ll even send you the source code for the demo so your
development staff can take a look at exactly how little we had to do to insert a guard! Go ahead…
challenge us. What have you got to lose – an increasingly difficult access management problem?

2AB, Inc.
1700 Highway 31
Calera, Alabama 35040

877.334.9572 (toll-free)

challenge@2ab.com

	August 2005
	Introduction
	What is the Resource Access Decision Facility?�
	Classification of Information
	Classification of people who may be required to access information
	Definition of GBAC Rules for Information Access
	Using the Java iLock Authenticator as part of a GBAC solution
	Summary
	Challenge 2AB!

