Using jL ock’s Java Authentication and Authorization Service (JAAS)
for Governance-Based Access Control (GBAC)

August 2005
www.2ab.com

Introduction

Access management is asimple concept. Every business has information that needsto be protected from
unauthorized disclosure. To protect information, companies define policies - often mandated by legislation
- that govern who can access specific classes of business and/or personal information. For example, if a
police investigator seeks to accesstransaction datarelated to a suspected terrorist from a private bank, they
should have authorization to do so, however, they should not be authorized to access the same information
about someone who is not suspected of any illegal activity. That is, thereisapolicy that specifically
governsthe release of information collected about individuals to other individuals. Or isthere? The
answer today is: “Probably not.” What does exist are written policies (or alaw) related to disclosure of
broad classes of business and personal information. But, often, individual datais not specifically classified
within organizations. Requests for information flow through individuals within an organization. The
policy isenforced only because human beings are skilled at generalizations; that is, we expect someonein
authority to be able to classify an ad hoc request for a particular piece of information and make a decision.

Access Management software has asimple goal. It allows the human who previously acted as a guardian
of sensitive information to be removed from the process without loss of access control. This sounds
simple, but most businesses are struggling with the implementation of access management as they integrate
and extend their applications. Thisis because machines cannot classify information or make access
decisions unless they are explicitly programmed with al gorithmsto accomplish this. When you take the
responsibility for access decisions away from human beings, it becomes necessary to insert software guards
into your applications.

CGil hasrecently released a whitepaper, " Gover nance-Based Access Control: Enabling improved
information sharing that meets compliance requirements,” introducing a new model for access control.
This model, called Governance-Based Access Control (GBAC), isfocused on the classification of
information assets for the purpose of information sharing in an environment where:

Many organizations may require access to information
Information may be accessed by, or shared with, external users
Everyone may be subject to compliance with multiple authorities and jurisdictions

In aprevious whitepaper, "Using jLock's Java Authentication and Authorization Service (JAAS) for
Application-Level Security,” we described a systematic approach to using JAAS to manage the complexity
associated with software access management. We explainedthe JAAS service-oriented architecture
(SOA), which maintains a clean separation of concerns between application functionality and access
management, and discussed the types of JAAS features that a scalable JAAS implementation should
support.

Inthis whitepaper, we explore the Governance-Based Access Control (GBAC) model and use the scenarios
presented in the CGI whitepaper as the basis of the sample access policy and the coding examples. We
show how jLock, 2AB’s commercial JAAS implementation, can be used to support the complex rule
requirements of the GBAC model. In acomplementary whitepaper, we explore an alternative model, the
OMG's Resource Access Decision (RAD) facility, to support GBAC. We hope these papers will help you
understand the GBAC model and how existing standards and tools can be leveraged to implement it.

1
Copyright 2005, 2AB Inc. All rightsreserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.




What is the Java Authentication and Authorization Service?

The Java Authentication and Authorization Service (JAAS) defines the standard programming interface for
building these software guardsin a Javaenvironment. Prior to JAAS, security mechanismsin Javawere
strictly code-based. That is, you granted permissions based on the code that was running — there was no
way to grant permissions based on the identity (or credentials) of the user of the application. For this
reason, any user-based access control mechanisms had to be coded directly into the business application
(typically requiring new database tables and/or directory infrastructure). When access policy or audit
requirements changed, application software had to be modified, tested and redeployed. Additionally, when
access policy needs to be examined, or applications audited for conformance, a code review was required.

Access management sol utions, such as commercial implementations of JAAS, provide scal able alternatives
to the costly embedding of access control mechanisms and access policy. They allow application software
guardsto leverage services that enable access policy to be modified, tested and deployed dynamically
without application code changes. This enables your developers to concentrate on providing business
software. Access management solutions efficiently enable high performance access controlsin distributed
environments while allowing centralized management of access policy. Any commercial access
management solution includes application programming interfaces (APIs) and policy management tools.
JAAS defines these APIsfor the Java environment.

Application security must address any security-related requirements not provided by the runtime security
infrastructure. 1n the area of access management, any requirement to restrict a) the usage of application
features or b) access to business and personal information is part of “application security.” Often these
restrictions on access to sensitive information are based on legislation. For thisreason, the Governance-
Based Access Control Model isbeing progressed as a means to classify information for the purpose of
assigning access policy. The CGI whitepaper, "Governance-Based Access Control (GBAC)," provides an
excellent overview of this model and is the basis of the examples in this whitepaper.

There are many excellent overviews of JAAS on Sun’s JavaSoft Web site. For that reason, we will assume
the reader has some familiarity with the JAAS model, and we will focus on how the JAAS model can be
leveraged to provide the fine-grain access control requirements of “application security” in an environment
that uses the Governance-Based Access Control (GBAC) model.

JAAS consists of two parts: Authentication and Authorization

Authentication answers the question: “How do | know that you are who you say you are?” The
goal of authentication isto securely determine who is executing Java code, regardless of whether
or not the code is part of a standalone Java application, a servlet, an applet or an Enterprise Java
Bean.

Authorization answers the question: “Now that | know who you are, how do | know if you are
allowed to access the information or application feature that you are requesting?’ The goal of
authorization is to protect business and personal information and sensitive application features
from being used by people who legitimately have access to the application and some subset of its
functionality.

There are anumber of papers from various sources that focus on how to build an implementation of JAAS.
These papers explain in detail the concepts, design center and classes that are used in aJAAS
implementation. The classes include LoginContext, LoginModule, CallbackHandler, Subject, Principal,
Permission and AccessController. We will discuss those conceptsin this paper as they become visible to
the Java programmer but will not discuss details of their implementation. This paper will focus on how a
Java developer uses a commercial implementation of JAASin conjunction with the GBAC model. We will
introduce the jLock AccessManager which extends the JAAS model to support the context -sensitive policy
requirements of GBAC. We will also explore how user identity and access policies are managed using
jLock Security Center administrative tools. We will outline the steps y ou need to take to use jLock's JAAS
with the GBAC model.

2
Copyright 2005, 2AB Inc. All rightsreserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.




Classification of Information

The classification of information assets is based on Governance attributes as outlined in Table 1 of the
GBAC whitepaper. Each classification of information is mapped to a JAAS resource or Permission. Inthe
Java Authentication and Authorization Service (JAAS) specification, thisis aunique string. You would
create resources for each possible classification that needs to be protected using the CreateResour ce Editor
as shown below.

Createlesource

@ MewResource
| IntelligenceDataProtectsds| |

[ Ok J [ Zancel ]

A unique string would need to be defined for each information classification.

We also support a more complex naming scheme if you want to give each classification afully qualified
structural name. To do this, you would use the OMG's Resource Access Decision (RAD) facility naming
scheme. In addition to using the graphical user interface, classifications may be entered programmatically
or viascripting.

In the screen shot shown below, we have defined aresource for each information classification listed in
Table 1 of the GBAC Whitepaper.

£+ il ock Administrative Tool |Z||EJ[’SZ|

File Wiew Preferences Help

L eh Resources | CIC++ Rezources | Eﬁesnurcegi Default Resource Operations |
Jaaz Resources | Corba Resources
Mewy Operation ] [ Delete Operation ]
[+ ‘ﬁ InteligencelbataProtecteds -Elefaurtl:lperatinns
[+ ‘ﬁ InteligencebataTopSecret ACCESE
[+ ‘ﬁ InvestigativeDataProtectedB Lpciste

# % InvestigativeDataProtecteds
[+ ‘ﬁ TransactionDataStandardDeposit
[+ ‘ﬁ TransactionDataSuspiciousDeposit

Security Center Connection Instance=cgi

Viewing the GBAC Information Classifications as JAAS Resour ces

This user interface is designed to precisely match the Java Authentication and Authorization Service where
Resource Permissions are defined as a string.

3
Copyright 2005, 2AB Inc. All rightsreserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.




Classification of People Who May be Required to Access Information

The classification of peoplein GBAC is based on roles. Theseroles are defined in Figure 4 in the GBAC
whitepaper. In the Java Authentication and Authorization Service, aroleisatype of Principal that may be
assigned to Subjects or Groups. The following shows the roles as defined in the GBAC Whitepaper for
each organization.

£« ilock Administrative Tool

File View FPreferences Help

:_UEEVE I GrDupsl Bl | Refreszh ] [ Mewy Role ]
# i} ComplianceDfficer
F i) Inteligence Analyst
# i} Policelnvestigator

Roles
ComplianceCfficer
|IFteligenceAnaly st
Policelnvestigator

Security Center Connection Instance=cgi

Examples of GBAC Roles

If desired, groups could also be defined as shown below:

£+ iLock Administrative Tool

Fil=  Wiew Preferences Help

| Usersi Groups | Raoles | |Resnurnes for Groun - FederalFinancialRennHinas SnalysisCentre |
ilﬂ Groups Group . FederalFinancialRepoting &AnalysizCentre

Uzers Available Users

W BF coleralFinancialReporting & Ans

# 83 FederalPolicesosncy Jones, Mary - mjiohes !Eh:numa, Titn - thouma

F 83 PrivateSectorFinancialnstiution iEiurt, Caral - churt

'Davis, John - jdavis
Howvard, James - jhoward

|Sm'rth, Fred - famith

Foles Available Roles
!Enmpliance@fficer
ilmelligence.ﬂ.nalyst
IPalicelrvestigator
[« ] i
=
g —

Security Center Connection Instance=cgi

Examples of GBAC Groups

4
Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.




Of course, you will also need to define Users. The Identity Manager in jLock also allows you to create
users and assign passwords. Password format requirements can be set using the Preferences menu. We
can use the Identity Manager Users tab to assign roles to our users. We assign GBAC roles asfollows:
John Davisis aCompliance Officer, Mary Jonesis an Intelligence Analyst and James Howard isa Police
Investigator.

£+ iLock Administrative Tool

File Miew Preferences  Help

Users | Groups | Roles | User : jhoward | Resources for User : jhoveard |
B (@B A | Last Micclle First

£ a Bouma, Tim - thourma

® & Burt, caral - churt |Howard | | | James |
@ @i _
= '-lﬂ 0] =er IO Optional Data

d a Lieie, Mo < ey | jhosneard | [ Reset Password ] | Jward@pulice.gml
® [ Em
E [ F o] Groups Availablatroups
E7] ﬂ = [0] FederalPoliceAgency FederalFinanciaIRepDrtinga
B @ H) =

PrivateSectorFinanciallnstit.,
= a Howward, James - jhowvard
= I.lﬂ Groups
B FederalPolicefoency £ | *

= I.l:} Roles Roles AvailableRoles

*-__} Paolicelnvestigator Policelnvestigator .CnmplianceOfficer
R R Inteligencetnalyst

£ a Jones, Mary - miones M
< I [ = ]

Security Center Connection Instance=cgi

£

James Howar d hasthe Role Policel nvestigator and isin the Group Feder alPoliceAgency

£+ iLock Administrative Tool El@| E|

File View Preferences Help

| Users | Gru:uups| Roles | Role : ComplianceOTficer ! Resources for Role : ComplianceOtficer |
QL:! Foles Uzers
SR omplianceOfficer Daviz, John - jdavis

a davis
[+ ﬂﬂ Groups
= 25) Inteligencednalyst
a rjones
[+ ﬂﬂ Groups
= 25} Policelnvestigator
& fsmith
a jhovevard
[+ ﬂﬂ Groups

Groups

Security Center Connection Instance=cgi

The Role view allows you to see who is assigned a Role

5
Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.




Definition of GBAC Rules for Information Access

Access Control rules are defined in GBAC based upon the roles of individuals and context information
related to the information. The rules we define below are outlined in Table 2 of the GBAC whitepaper.

By selecting a Resource (these are the GBAC classifications) operation, you can modify the policy as
shown below. Note that jLock allows you to specify rulesfor different operations on Resources (the
GBAC classification). For example, you see that there are access and update rules which may be defined
differently.

£« ilock Administrative Tool

File View Preferences Help

CIC++ Resources Operation | access : U=ers for Operation : access |

Weh Resources =
i = | (T Deny Al Ertitlement Rules: 1 Edlit ..

SubjectMame = John Doe

S 1R AT B e

Jaas Resources

qj Resources
= 5 InteligenceDataPrat () Deny List

®= u_j R | | G mlow List Titne Constraints:

B update - Ao
3 InteligenceDataTop

¥ InvestigativeDataPre el ! T
3 IvestigativeDataprd| | oHoSErS vallanleUsers

T TransactionDataSta IiE‘Duma. Tirn - thouma

| 3 TransactionDatasus !EEL‘H_' i ':_b“”_ 1
imfﬁaws, .Ju:urjn - jdaviz 7
ﬂllnwed@rnups .ﬂ.vailahleﬁ}ruups

!FederalFinancialHepDrting&.ﬂ-.nalys e
;FederaIPnlice.&genw 3
= % [ S

ﬂlnwedﬁnles AvailableRoles

'F‘u:ulin:elm-'estigatnr i!?:nmpliaﬁ;:-éofficer
| | :
!ilntelllgence.&nalyst
< ! > [ = ]

Security Center Connection Inztance=cgi

) Bllow Al

e

1 - I

E

] B
;}!

+

[k

Because GBAC requires context information be provided at the time of the access request, an entitlement
rule is added. Entitlement rules allow the program to pass context information at the time of the access
request. Thisinformationisevaluated as part of the policy. For example, the scenario in the GBAC
whitepaper has two different examples of this. Some of the rules are scoped to information regarding
someone with the Subject Name of "John Doe" as shown above. In another GBAC rule, the transaction
amount of adeposit must be greater than $10,000. Thistype of policy isan example of what jLock calls
entitlement rules. The JAAS model of authorization has no mechanism for supporting this type of rule.
For this reason, jLock has extended JAAS to enable complex, context -sensitive and entitlement-based
policies. Entitlement rules are supported in the Power Edition of jLock.

6
Copyright 2005, 2AB Inc. All rightsreserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.




Hereis how the entitlement rule would be specified using the Entitlement Editor:

Matne Walue Value Type Relatiohzhip
=ubjectMame John Doe =tring Eqjual -~

Ok | Cancel

In English the policy defined in the two screens shown above would read:

Anyone who has been assigned the role "Policel nvestigator" is allowed access (to the named
resource) with the constraint that the " SubjectName" (which is of datatype String) is Equal to
"John Doe."

To create multiple constraints, you must define multiple entitlement rules. The demo that we are providing
also includes policy for access to the resource TransactionDataSuspiciousDeposit that includes multiple
entitlement rules asfollows:

Anyone who has been assigned the role "IntelligenceAnalyst" is allowed access (to the named
resource) with the constraint that the " TranType" (which is of datatype String) is Equal to "Cash"
and the "Amount" (which is of datatype Decimal) is Greater Than 10000.

The Entitlement rule would be defined in the editor as shown below.

Matne Walue Yalue Type Relationship
TranType Cash =tring Eqqual *~
Armourt 10000 Decimal Greater Than

W

| Ok Cancel

Example of defining multiple entitlementsto an accessrule

7
Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.




Using JAAS Authentication as Part of a GBAC Solution

JAAS authentication is based on the Pluggable Authentication Module (PAM) architecture. Leveraging an
architecture that supports ‘ plug-ins' for authentication ensures that Java applications can be independent of
the underlying authentication mechanism. This has the advantage that new or revised authentication
mechanisms can be plugged in without modifying the application code. That is, management of User IDs
and Passwords (or other methods of authentication) are removed from the application’s concern. For this
example, we will leverage the dialog-based User 1D and Password authenticator that is supplied with the
jLock product.

Thefirst thing you need to do is specify the JAAS implementation that you are using. Thisisdonewith a
login configuration file. This may be done on the command line when you invoke your application.

java -Djava.security.auth.login.config=config.txt ...
Thejaas_config.txt file, supplied with the example, is shown below. It specifies an application name

(JaasDemo) and the jLock plug-in class for the LoginModule. We are also specifying the instance name of
the Security Center repository that holdsidentity and policy information.

/** Login Configuration for the GBAC JAAS Demo Applications **/

JaasDemo

{
b

com.twoab.jaas.LoginModuleUP required instance="cgi";

JAAS Login Configuration File (jaas_config.txt)

Thisisthe Javacode for aclassthat prints“Hello iLock World” if user authentication succeeds. The two
JAAS methods your application needs to invoke to use a JAAS authenticator are shown inbold font.

public HelloJAAS() {
LoginContext Ic = null;

/** Create a LoginContext object. */

try {
Ic = new LoginContext("JaasDemo", new DialogCallbackHandlerUP());

} catch (LoginException le) {
System.out.println("Cannot create LoginContext. " + le.getMessage());
System.exit(1);

} catch (SecurityException se) {
System.out.println("Cannot create LoginContext. " + se.getMessage());
System.exit(-1);

}

try {
Ic.login();

catch (LoginException le) {
System.out.printin(*\nAuthentication failed:");
System.out.printin(" " + le.getMessage());
System.exit(1);
}
System.out.printin("\nHello iLock World!'\n"); ...

JAAS Authentication Code Sample (HelloJAAS.java)

That is all the code and configuration you need!  When you run the example (runDial og.bat), at the point
where thelc.login() is called, the following dialog will appear.

8
Copyright 2005, 2AB Inc. All rightsreserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.




£ 1D f Password @

User ID

|mi|:|nes

Password

— |

OK Cancel

Typein aUser ID and Password as shown above and click OK. jLock will authenticate the user.

Assuming you typed avalid User ID and Password, the example programresults will, as you might expect,
look like the following:

oo | Select ilockdemos =

C:wilocksdemossjaas~CGI _GBAC_JAAS >runHello

Hello iLock World?

Authentication Succeeded

Of course, if you should fail to provide avalid User ID and/or Password, you will seethis:

¢t ilockdemos
C:wilocksdemos~jaas~CGI _GBAC_JAAS >runHello

Authentication failed:
Login Failure: all modules ignored

Authentication Failed

The HelloJAAS demo program has obviously written no Java code to manage Users or Passwords, or to do
the work required to authenticate the user (in this case verify the password). That isthe great thing about
the JAAS architecture; just “plug in” jLock, and it securely manages all that for you! jLock also ensures
that the password is never availablein clear text. jLock securely stores and transmits password information
- even if you are not using an encrypted transport protocol.

9
Copyright 2005, 2AB Inc. All rightsreserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.




Now we are ready to explore JAAS authorization. To understand the JAAS Authorization model, you must
first understand a little more about what happens when you authenticate using JAAS. When the user
(mjones in the example above) was authenticated, a Subject object was created. A Subject representsthe
entity that was authenticated — that is, the entity that has been able to prove their identity. A JavaPrincipal
isa“security attribute” or “credential” that can be associated with one or more Subjects. During the
authentication process, the jLock authenticator acquired the credentials of the Subject and associated them
with the subject by creating the appropriate Principal objects. A user (i.e. Subject) may always be able to
prove their identity, but their credentials (i.e. Principals) may change over time. For thisreason, security
access policy is defined in terms of the security attributes (or in Javaterminology Principals) that are
associated with the Subject at the time identity was authenticated. jLock supports three types of Principals:
1) AccessldPrincipal, 2) RolePrincipal and 3) GroupPrincipal. These map to the Userlds, Groups and
Roles shown in the Identity Manager. These are the fundamental building blocks of access policy. Inthe
section above, you can see that the user, Mary Jones, has the following jLock security attributes.

Accessld: mjones
Role: IntelligenceAnalyst
Group: FederalFinancial Reporting& AnalysisCentre

If you add the following code to the example, you can see that the LoginContext allows navigation to a
Subject that manages a set of Principals.

java.util.Set prin_set = Ic.getSubject().getPrincipals();
java.util.lterator it = prin_set.iterator();
while (it.hasNext() == true) {
java.lang.Object obj = it.next();
if (obj instanceof AccessldPrincipal) {
System.out.println("Accessid - " +
((AccessldPrincipal)obj).getName());

else if (obj instanceof GroupPrincipal) {
System.out.printin("Group - " +
((GroupPrincipal)obj).getName());

else if (obj instanceof RolePrincipal) {
System.out.printin("Role - " +
((RolePrincipal)obj).getName());

else {
System.out.printin("Unknown principal type");
}
}

Codeto display the names of the Principals associated with the authenti cated Subject

Running with this code, you will see the output below following authentication:

+| ilockdemos
C:“iLock“demos*jaas~CGI_GBAC_JAAS >run —d

JAAS Principals:
Accessld — AUTHEWMTICATED
AcceszzId - PUBLIC
Acce=zzld — wid:mjones
Role — IntelligencefAnalyst
Group — FederalFinancialReporting&A

10
Copyright 2005, 2AB Inc. All rightsreserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.




Extending JAAS Authorization for GBAC

The JAAS Authorization model extends the code-centric, Java security architecture that uses a security
policy to specify what access is granted to executing code (such as accessto files, sockets or specific
operations). The extension allows security access policy to be defined based on the credential s associated
with the user of the code. Just asacommercial JAAS Authentication may be plugged in, the JAAS
Authorization model also allows vendors to offer commercial solutions that offer scalability, management
and enhanced support for sophisticated access policy.

There are limitations in the JAAS Authorization model in Sun's reference implementation. For example,
Sun’s reference implementation requires that grant statements that define access policy be placed in policy
files for each user and that the application use the Java Security Manager (in the same way that grant
statements and policy files are used for code-centric security). Sinceit obviously is not practical (or
secure) to manage user-based access policy in local, plain-text files for alarge user community, JAAS
providers such as 2AB offer solutions that allow identity and access policy to be managed separately from
the application. Sun’sreference implementation also requires that any code that requires user-based access
control be placed in a separate class and executed only via Subject.doAs (or doAsPrivileged) methods.

That sets the scope of the user-based software guard to the class where the sensitive codeislocated. jLock
does not preclude the use of the do.As operations for access management but does support the insertion of
software guards that use the JAAS Principal-based authorization model without the requirement to segment
the codeinto separate classes. Notice that while we can certainly run this application with the Java
Security Manager installed (adding afew permissions to the java.policy fil€), this demo does not require
the Security Manager to leverage the jLock JAAS features. Y ou simply insert your sensitive codein atry
block and check for the appropriate permission before running it. Remember, you are not checking
whether the code has access to the resource, you are only checking whether or not the application should
provide the resource to the user.

jLock supports the use of the JAAS AccessController for checking access permissions and also provides a
more powerful AccessManager that enables entitlement-based polices (such asthose defined in the GBAC
whitepaper) to be supported. Note that after the user has authenticated, it is still necessary to determineif
the user has permission to access|ntelligenceDataProtectedB information. The code snippets below show
use of the AccessController and the more powerful AccessManager.

String gbac_class = new String("IntelligenceDataProtectedB);

try {
ResourcePermission p = new ResourcePermission(gbac_class);
AccessController.checkPermission(p);
System.out.printin("Access to " + gbac_class + " Info is granted");

}

catch (com.twoab.jaas.AccessControlException ace) {
System.out.printin("Sorry - Access to " + info_class + " Info is denied");

}

Codeto protect accessto the “IntelligenceDataProtectedB” information
using a JAAS AccessController

EntitlementData ed = new EntitlementData[1];
ed[0] = new EntitlementData("'SubjectName", "John Doe");
String gbac_class = new String("IntelligenceDataProtectedB);

JaasResource jr = new JaasResource (gbac_class);

if (am.accessAllowed(jr, "access", Ic.getSubject(), ed)) {
System.out.printin("Granted access to " + jr.toString() + " Info");
}else {

}

System.out.printin("Denied access to " + jr.toString() + " Info ");

Codeto protect accessto the*“ IntelligenceDataProtectedB” information
usingajLock AccessManager with Entitlement context data

11
Copyright 2005, 2AB Inc. All rightsreserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.




It isthat simple to add GBAC authorization to your application. We have provided simple demonstration
programs as well as afull prototype so that you can run to see how thisworks. When you run thesimple
demo and authenticate using mjones as the User ID, you will see the following dialog showingthe
resourcesthat Mary Jones, an IntelligenceAnalyst is allowed to access (sample code sets subject John Doe,
transaction type of cash and amount of $12,000).

ilockdemos
C:wilocksdemoszsjaas~CGI _GBAC_JAAS >randaaszAM —d

JAAS Principals:
Accessld — AUTHENTICATED
Accessld — PUBLIC
Accessld — wid:mjones
Role — IntelligencefAnalyst
Group — FederalFinancialReporting&AnalysizCentre

Checking permission to access GBAC classified Information

Granted access to IntelligencelDataProtectedB Info
Granted acceszsz to IntelligenceDataTopSecret Info
Granted access to InvestigativeDataProtectedB Info
Denied accessz to InvestigativeDataProtectedC Info
Denied access to TransactionDatafStanadardDepozit Info
Granted access to TransactionDataSuspiciousDeposit Info

Mary Jones, an IntelligenceAnalyst, requesting access to John Doe€'s information

However, if you run the demo and authenticate using jhoward asthe User ID, you will see that James
Howard, a Policelnvestigator, isallowed to accessthe following classes of information:

o jlockdemos

JAAS Principals:
Accessld — AUTHEWNTICATED
Accessld — PUBLIC
Accessld — uwid: jhoward
Group — FederalPolicefAgency
Hole — Policelnvestigator

Checking permission to access GBAC classified Information

Granted access to IntelligencelDataProtectedB Info
Denied accessz to IntelligenceDataTopSecret Info

Granted access to InvestigativeDataProtectedB Info
Granted acceszsz to InvestigativeDataProtectedC Info
Denied access to TransactionDatafStanadardDepozit Info
Granted acceszsz to TransactionDataSuszspiciounsDeposzit Info
C:“ilockdemos*jaas~CGI_GBAC_JAAS >

James Howard, a Palice Investigator , requesting access to John Doe'sinformation

All of thetools for creating and managing the access policy are provided by jLock. ThejLock architecture
supports dynamic policy updates that take effect immediately, so applications do not need to be restarted
when access policies change. jLock also supports remote policy administration.

12
Copyright 2005, 2AB Inc. All rightsreserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.




A GBAC Demonstration Based on the CGl Whitepaper

Next we want to show how you might build an application that integratesintelligence data, investigative
data and transaction data while only displaying the information that a user is authorized to view. We call
this demonstration programthe “Terrorist Information Portal.” The source code for the demonstration
program below is freely available.

When Mary Jones, an Intelligence Analyst, logs into the system, sheis provided access to information
sorted by the agency that ownsit. Note that sheisonly allowed to view information that she is authorized
to see. That is, there may be more information in the database, based on the GBAC rules, that she is not
authorized to view. That is, the portal dynamically constructs the user view based upon the results of
consultation with a GBAC access controller. To change the information available, no code iswritten—the
GBAC rules are simply changed using the graphical administration tools provided to the security
administrator.

£ Terriorist Information Portal

ary Jones InfaClass: Transaction Data Fri Sep 02 16:22:11 CDT 2005
|| AGENCIES Agency:  Private Sector Financial Institution: PSFI-0001
= ] Private Sector Financial Institution A
1l :iI:II_JE:E:lEEF:II:IE:it Stats I Demugraphics |
Bank: CiCorp Officers: S0
# |nvestigativeDataProtecteds )
= | ] Federal Financial & Reparting Certer ETiRE o BotE
# InteligencelataProtectedB
# InteligencelataProtectedB
# InteligencebataTopSecret Type: TransactionData=uspiciousDeposit
|Subjecthlame  Trantype Arnourt Drate
|John Doe Cazh F100,000 114 472004
|Jabin Doe Cash 11,000 114052004
|Johin Doe Cash F12,000 121 472004
|John Dioe Cash F14 200 11242005
|John Doe Cazh F13,000 11042004
|Jabin Doe Cash F11,000 1141052004
|Johin Doe Cash F16,200 110472004
|John Dioe Cash 17 200 114442005

Information Authorized for Mary Jones, an Intelligence Analyst

Hereistheline of code (Guard) that isinserted into the application to determine whether or not to display
an agency inthetree. A similar access control check (which also passes entitlement information, such as
the SubjectName and Amount) is made on each document type to determine the documentsto displayed
under the agency. Inthisway, the access policy remains separate from the application and can be modified
dynamically using the policy administrative tools shown earlier in this paper.

boolean view = true;
view = am.accessAllowed(agency.toResource(),operation,Im.getSecurityAttributes());

Codein prototype to determine whether or not an agency can be viewed by the user

13
Copyright 2005, 2AB Inc. All rightsreserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.




Below we see the same portal when John Davis, a Compliance Officer, islogged in. Notice that
information is not shared with the Private Sector Financial Institution and so John’s view does not even
include those agencies.

£ Tarriorist Information Portal

John Davis InfoClass: Tranzaction Data Fri Sep 02 17:13:51 COT 2005

;l AGEMCIES Agency: Private Sector Financial Institution: PSFI-0001
= || Private Sector Financial Institution |S‘tat a, —

L BTranzactionDataStandardDeposit | % | Demographics |

# TranzactionDataSuspiciousDepost | Bank: CiCorp Officers: 50

Fevenue: 15B Fating: 93

Type: TranzactionDatastandardDeposit
|Subiect Mame  Trantypoe AmoLnt Drate
Johk Doe Cazh F1.000 110452004
\John Doe Cazh F1.000 111 052004
|Jahr Coe Check $1.200 125452004
|John Doe Cazh F4.200 142005
\John Coe Cazh $1.200 11402004
|John Doe Cazh F1.000 121 0052004
|John Doe Check F1.,200 2042004
|John Doe Cazh F1.200 Q42005

5= o |
Information Authorized for John Davis, a Compliance Officer

And finally we look at the view of a Police Investigator.

£ Terriorist Information Portal

Latmes Howard InfaClass: Inteligence Data Fri =ep 02 170225 CDT 2005

;] ACEMCIES Agency:  Federal Financial & Reporting Center: FFRAC-0001

= || Private Sector Financial Institution =
# TranzactionDataSuspiciousDeposit

=l || Federal Police Agency Uriformed Officers: 250 Special Forces: 0
# |nvestigativeDataProtecteds

Stats | Demographics |

® IrvestigativeDataProtected Hhicreoserds alu it
[=I || Federal Financial & Reporting Center

L BlIrteligencelataProtectedB

# InteligencelataProtectedB Type: InteligencelataProtectedE

SubiectMarme: Johh Doe
|Address: 1700 Hvwwy 31
e M

City: Calera

\State: AL

Information Authorized for JamesHoward, a Police I nvestigator

14
Copyright 2005, 2AB Inc. All rightsreserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.




Summary.

In this paper we have outlined how the jLock JAAS service can be used to implement a Service Oriented
Architecture for application-level security that meets the unique requirements of Goverance-Based Access
Control as defined by CGlI in their GBAC whitepaper.

Thetrend towards a service-oriented architectural approach to dealing with application-level security is
evident in recent analyst reports. For example:

META Group predicted in late 2003: “ as businesses begin to put more focus on
design for application securability and service oriented architecture, application-
specific security mechanisms will migrate to infrastructure.”

A JAAS implementation such asjLock provides APIs that enable you to authenticate and easily integrate
access control checks within your business applications. JAAS supports a pluggable architecture that
allows you to select your JAAS vendor based upon your requirements for authentication and access policy
support.

Utilizing JAAS, your business devel opers simply insert AccessController or AccessManager calls
(Software Guards) at the pointsin the software where sensitive resources are exposed. This Guard consults
with the jLock Access Manager who eval uates the policy and advises the Guard on allowing access.

~~ Application E
, _ (e )

.'-'.
.-

The JAAS architecture enables many different policy modelsto be leveraged by a Java business
application.

JAAS supportsa service-oriented architecture for authentication and authorization

15
Copyright 2005, 2AB Inc. All rightsreserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.




Challenge 2AB!

Areyou still not sureif jLock can help with your GBAC requirements? Challenge usto proveit. Send us
four or five examples of your access management requirements. We'll configure jLock with policiesyou
can use and send you an eval uation copy of jLock, complete with aworking demo so you can see how to
leverage jLock within your application. We'll even send you the source code for the demo so your
development staff can take alook at exactly how little we had to do to insert aguard! Go ahead...
challenge us. What have you got to lose — an increasingly difficult access management problem?

2AB, Inc.
1700 Highway 31
Calera, Alabama 35040

877.334.9572 (toll-free)
challenge@2ab.com

16
Copyright 2005, 2AB Inc. All rightsreserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.




